

Tmax Bio

常规生物反应器

发酵工艺优化与放大

产品简介

常规生物反应器 (Tmax Bio bioreactor) 是实验室或工业上对工程菌株进行发酵, 验证其生产能力的装置。由 通气系统、搅拌系统、温度控制系统、pH控制系统、溶氧控制系统、补料系统和操作软件等几部分组成,参数 控制稳定,能更好的帮用户验证菌株生产性能,快速确定放大工艺。

手动补料、间歇补料、溶氧关联补料、pH关联补料、顺控补料、方程补料、指数补料,

多种补料功能任选,设置界面简单易懂,帮助用户更快定位最佳工艺。

优势

轻松检查关键配件连接状态 一键自检,轻松排查仪器问题。

多种补料模式可选

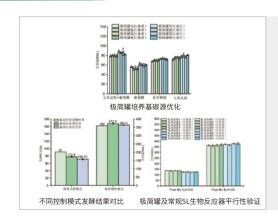
工艺模型自由导出

随时保存不同发酵批次工艺模型,一键导出不同工艺路线,更高效构建工艺模型库, 更直观形成工艺路线。一键对比不同批次工艺模型,精准发现关键优化点。

工作流程

01 平板活化

02 摇瓶活化


03 发酵培养

Tmax Bio 生物反应器技术参数	
重量、尺寸	罐体+控制器=25kg,控制柜35cm×20cm×70cm
软件	单片机版触摸屏控制,上位机软件各参数支持随意修改
规格	1L/3L/5L/7L,支持定制其它规格
桨叶	六平叶、六斜叶、消泡桨,支持定制
搅拌速度	伺服电机,0-1500rpm,转速波动±1rpm
温度控制	PT100温度电极智能控制,精度±0.1°C
pH控制	瑞士进口Hamilton pH电极,智能控制,精度±0.02
溶氧控制	瑞士进口Hamilton溶氧电极,极谱法电极与光氧电极可选。测量范围0-150%,智能控制。
消泡控制	灵敏度100-100000Ω,手动/智能控制消泡剂添加。
补料控制	手动补料、间歇补料、pH关联补料、溶氧关联补料、指数补料、方程补料、顺控补料。补料速度取决于管直径。
通气控制	手动转子流量计,通气范围视罐体大小。
尾气冷凝	尾气管有冷凝系统
报警控制	超范围报警,报警参数、范围可设置
审计	参数修改过程留痕
硬件材质	罐体为高硼硅玻璃,机加工件为316L不锈钢
登陆权限	三级权限,不同权限所能执行的操作不同

应用案例

紫红曲霉红曲色素发酵工艺优化

- 1.根据文献资料,使用极简罐对发酵过程碳源进行了优化,玉米淀粉培养效果 最佳,玉米淀粉中添加适量葡萄糖获得更高色价。
- 2、常规5L生物反应器放大过程中发现,培养基过于黏稠,堵住溶氧电极,导致溶氧关联搅拌模式下获得较差发酵结果。
- 3、借助极简罐优化不同阶段搅拌转速控制方案,并在常规5L生物反应器中使用转速顺控模式,红曲红色价提高两倍以上。
- 4、5批次实验中均获得接近的色价, 极简罐与常规5L生物反应器有着良好的平行性。